American Chemical Society
ct400610x_si_001.pdf (230.02 kB)

Optimizing Protein–Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field

Download (230.02 kB)
journal contribution
posted on 2014-01-14, 00:00 authored by Dail E. Chapman, Jonathan K. Steck, Paul S. Nerenberg
The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein–protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm3 in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm3 (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.