ja0377605_si_001.pdf (60.26 kB)

Optical and Electrical Properties of Three-Dimensional Interlinked Gold Nanoparticle Assemblies

Download (60.26 kB)
journal contribution
posted on 17.03.2004, 00:00 by Jurina M. Wessels, Heinz-Georg Nothofer, William E. Ford, Florian von Wrochem, Frank Scholz, Tobias Vossmeyer, Andrea Schroedter, Horst Weller, Akio Yasuda
The optical and electrical properties of 11−20 nm thick films composed of ∼4 nm gold nanoparticles (Au-NPs) interlinked by six organic dithiol or bis-dithiocarbamate derivatives were compared to investigate how these properties depend on the core of the linker molecule (benzene or cyclohexane) and its metal-binding substituents (thiol or dithiocarbamate). Films prepared with the thiol-terminated linker molecules, (1,4-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)cyclohexane, 1,4-bis(mercaptoacetamido)benzene, and 1,4-bis(mercaptoacetamido)cyclohexane), exhibit thermally activated charge transport. The activation energies lie between 59 and 71 meV. These films show distinct plasmon absorption bands with maxima between 554 and 589 nm. In contrast, the film prepared with 1,4-cyclohexane-bis(dithiocarbamate) has a significantly red-shifted plasmon band (∼626 nm) and a pronounced absorbance in the near infrared. The activation energy for charge transport is only 14 meV. These differences are explained in terms of the formation of a resonant state at the interface due to overlap of the molecular orbital and metal wave function, leading to an apparent increase in NP diameter. The film prepared with 1,4-phenylene-bis(dithiocarbamate) exhibits metallic properties, indicating the full extension of the electron wave function between interlinked NPs. In all cases, the replacement of the benzene ring with a cyclohexane ring in the center of the linker molecule leads to a 1 order of magnitude decrease in conductivity. A linear relationship is obtained when the logarithm of conductivity is plotted as a function of the number of nonconjugated bonds in the linker molecules. This suggests that nonresonant tunneling along the nonconjugated parts of the molecule governs the electron tunneling decay constant (βN-CON), while the contribution from the conjugated parts of the molecule is weak (corresponding to resonant tunneling). The obtained value for βN-CON is ∼1.0 (per non-conjugated bond) and independent of the nanoparticle-binding group. Hence, the molecules can be viewed as consisting of serial connections of electrically insulating (nonconjugated) and conductive (conjugated) parts.

History

Exports