ac7b01532_si_001.pdf (474.97 kB)
Download file

Noninvasive and Highly Selective Monitoring of Intracellular Glucose via a Two-Step Recognition-Based Nanokit

Download (474.97 kB)
journal contribution
posted on 14.07.2017, 00:00 by Jianru Tang, Dandan Ma, Stevan Pecic, Caixia Huang, Jing Zheng, Jishan Li, Ronghua Yang
Accurate determination of intracellular glucose is very important for exploring its chemical and biological functions in metabolism events of living cells. In this paper, we developed a new noninvasive and highly selective nanokit for intracellular glucose monitoring via two-step recognition. The liposome-based nanokit coencapsulated the aptamer-functionalized gold nanoparticles (AuNPs) and the Shinkai’s receptor together. When the proposed nanokit was transfected into living cells, the Shinkai’s receptor could recognize glucose first and then changed its conformation to endow aptamers with binding and sensing properties which were not readily accessible otherwise. Then, the binary complexes formed by the intracellular glucose and the Shinkai’s receptor can in situ displace the complementary oligonucleotide of the aptamer on the surface of AuNPs. The fluorophore-labeled aptamer was away from the AuNPs, and the fluorescent state switched from “off” to “on”. Through the secondary identification of aptamer, the selectivity of the Shinkai’s receptor could be greatly improved while the intracellular glucose level was assessed by fluorescence signal recovery of aptamer. In the follow-up application, the approach exhibits excellent selectivity and is noninvasive for intracellular glucose monitoring under normoxia and hypoxia. To the best of our knowledge, this is the first time that the advantages of organic receptors and nucleic acids have been combined and highly selective monitoring of intracellular glucose has been realized via two-step recognition. We expect it to open up new possibilities to integrate devices for diagnosis of various metabolic diseases and insulin delivery.