cs9b02243_si_001.pdf (300.47 kB)
Download fileNiAl2O4 Spinel Supported Pt Catalyst: High Performance and Origin in Aqueous-Phase Reforming of Methanol
journal contribution
posted on 2019-09-26, 18:41 authored by Didi Li, Yi Li, Xiaohui Liu, Yong Guo, Chih-Wen Pao, Jeng-Lung Chen, Yongfeng Hu, Yanqin WangThe production of hydrogen from the aqueous-phase reforming (APR)
of oxygenated hydrocarbons is promising. Herein, the performances
of Pt loaded on NiAl2O4 spinel and γ-Al2O3 were investigated in the APR of methanol. The
conversion of methanol and the yield of hydrogen over Pt/NiAl2O4 reached 99.9% and 95.7%, respectively. In comparison
with Pt/γ-Al2O3 catalyst (26.5% and 23.3%,
respectively), these values were enhanced by 4-fold. More importantly,
Pt/NiAl2O4 had high stability with only 10%
loss of its initial conversion after 600 h on stream. In situ diffuse reflectance infrared Fourier transform spectra (DRIFTS)
of the APR of methanol revealed that the reaction underwent the dehydrogenation
of methanol and the sequential water–gas shift (WGS) reaction.
These two reactions were then investigated independently, in which
Pt/NiAl2O4 showed more efficient performance
than Pt/γ-Al2O3. Intensive characterization
methods revealed that the chemical state of Pt played a pivotal role
in the dehydrogenation of methanol to generate the adsorbed CO intermediate.
For Pt/NiAl2O4 catalyst, the reduction of PtOx to metallic state Pt was easier because
of the presence of the oxygen vacancy, leading to the higher catalytic
performance in the dehydrogenation of methanol. Further studies with in situ DRIFTS-MS of WGS demonstrated a redox mechanism
over Pt/NiAl2O4 catalyst, which was different
from the associative route that occurred over Pt/γ-Al2O3 and made the WGS reaction faster. The addition of Ni
(NiAl2O4 spinel) creates oxygen vacancies, giving
WGS which underwent a redox route. This work presents the deep understanding
into the pathway and mechanism in the APR of methanol and is expected
to have important implications for the future development of APR catalysts.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
oxygen vacancyoxygenated hydrocarbonsstate Ptfuture developmentAqueous-Phase ReformingWGS reactionNiAl 2 O 4 SpinelDRIFTS-MSredox routechemical stateHigh PerformancePt CatalystCODRIFTSassociative route600 hIntensive characterization methodsAPR catalystsoxygen vacanciesNiAl 2 O 4 spinelγ- Al 2 O 3methanolPtO xredox mechanism