ja210160k_si_002.pdf (2.81 MB)

New Insights into Frustrated Lewis Pairs: Structural Investigations of Intramolecular Phosphane–Borane Adducts by Using Modern Solid-State NMR Techniques and DFT Calculations

Download (2.81 MB)
journal contribution
posted on 21.02.2016, 18:39 by Thomas Wiegand, Hellmut Eckert, Olga Ekkert, Roland Fröhlich, Gerald Kehr, Gerhard Erker, Stefan Grimme
Covalent bonding interactions between the Lewis acid and Lewis base functionalities have been probed in a series of “frustrated Lewis pairs” (FLPs) (mainly substituted vinylene linked intramolecular phosphane–borane adducts), using solid-state nuclear magnetic resonance techniques and accompanying DFT calculations. Both the 11B NMR isotropic chemical shifts and nuclear electric quadrupolar coupling parameters turn out to be extremely sensitive experimental probes for such interactions, revealing linear correlations with boron–phosphorus internuclear distances. The principal component Vzz of the 11B electric field gradient tensor is tilted slightly away (∼20°) from the boron–phosphorus internuclear vector, leading to an improved understanding of the remarkable reactivity of the FLPs. Complementary 31P­{1H}-CPMAS experiments reveal significant 31P–11B scalar spin–spin interactions (1J ≈ 50 Hz), evidencing covalent bonding interactions between the reaction centers. Finally, 11B­{31P} rotational echo double resonance (REDOR) experiments show systematic deviations from calculated curves based on the internuclear distances from X-ray crystallography. These deviations suggest non-zero contributions from anisotropic indirect spin–spin (J anisotropy) interactions, thereby offering additional evidence for covalent bonding.