pr500317d_si_010.pdf (14.88 kB)

Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation

Download (14.88 kB)
journal contribution
posted on 01.08.2014, 00:00 by Andrew J. Percy, Juncong Yang, Andrew G. Chambers, Romain Simon, Darryl B. Hardie, Christoph H. Borchers
Multiplexed quantitation is essential for discovering, verifying, and validating biomarkers for risk stratification, disease prognostication, and therapeutic monitoring. The most promising strategy for quantifying unverified protein biomarkers in biofluids relies on selected/multiple reaction monitoring (SRM or MRM) technology with isotopically labeled standards employed within a bottom-up proteomic workflow. Since cerebrospinal fluid (CSF) is an important fluid for studying central nervous system (CNS) related diseases, we sought to develop a rapid, antibody- and fractionation-free MRM-based approach with a complex mixture of peptide standards to quantify a highly multiplexed panel of candidate protein biomarkers in human CSF. Development involved peptide transition optimization, denaturation/digestion protocol evaluation, transition interference screening, and protein quantitation via peptide standard curves. The final method exhibited excellent reproducibility (average coefficient of variation of <1% for retention time and <6% for signal) and breadth of quantitation (130 proteins from 311 interference-free peptides) in a single 43-min run. These proteins are of high-to-low abundance with determined concentrations from 118 μg/mL (serum albumin) to 550 pg/mL (apolipoprotein C-I). Overall, the method consists of the most highly multiplexed and broadest panel of candidate protein biomarkers in human CSF reported thus far and is well suited for subsequent verification studies on patient samples.

History

Exports