ac100581y_si_001.pdf (262.81 kB)

Multimodal Spectroscopy Combining Time-of-Flight-Secondary Ion Mass Spectrometry, Synchrotron-FT-IR, and Synchrotron-UV Microspectroscopies on the Same Tissue Section

Download (262.81 kB)
journal contribution
posted on 01.05.2010, 00:00 by Vanessa W. Petit, Matthieu Réfrégiers, Catherine Guettier, Frédéric Jamme, Kumaraparithy Sebanayakam, Alain Brunelle, Olivier Laprévote, Paul Dumas, François Le Naour
Mass spectrometry and spectroscopy-based approaches can provide an overview of the chemical composition of a tissue sample. This opens up the possibility to investigate in depth the subtle biochemical changes associated with pathological tissues. In this study, time-of-flight secondary ion mass spectrometry (TOF-SIMS) and synchrotron-FT-IR and -UV imaging were applied to the same tissue section by using the same sample holder. The tested sample involved liver cirrhosis, which is characterized by regeneration nodules surrounded by annular fibrosis. A tissue section from a cirrhotic liver was deposited on a gold coated glass slide and was initially analyzed by FT-IR microspectroscopy in order to image the distribution of lipids, proteins, sugars, and nucleic acids. This technique has identified collagen enrichment in fibrosis whereas esters were mostly distributed into the cirrhotic nodules. The exact same section was investigated using TOF-SIMS demonstrating that some molecular lipid species were differentially distributed into the fibrosis areas or cirrhotic nodules. Spectra of UV microspectroscopy obtained from the same section allowed visualizing high autofluorescence from fibrous septa confirming the presence of collagen. Altogether, these results demonstrated that TOF-SIMS and FT-IR/UV microspectroscopy analyses can be successfully performed on the same tissue section.

History