American Chemical Society
Browse
- No file added yet -

Multilayer Functional Tapes Cofired at 450 °C: Beyond HTCC and LTCC Technologies

Download (614.01 kB)
journal contribution
posted on 2018-03-07, 00:00 authored by Jobin Varghese, Tuomo Siponkoski, Maciej Sobocinski, Timo Vahera, Heli Jantunen
This paper reports the first ultralow sintering temperature (450 °C) cofired multifunctional ceramic substrate based on a commercial lead zirconium titanate (PZ29)–glass composite, which is fabricated by tape casting, isostatic lamination, and sintering. This substrate was prepared from a novel tape casting slurry composition suitable for cofiring at low temperatures with commercial Ag electrodes at 450 °C. The green cast tape and sintered substrate showed a surface roughness of 146 and 355 nm, respectively, suitable for device-level fabrication by postprocessing. Additionally, the ferroelectric and piezoelectric studies disclosed low remnant polarization due to the dielectric glass matrix with average values of piezoelectric coefficient (+d33) and voltage coefficient (+g33) of 17 pC/N and 30 mV/N, respectively. The dielectric permittivity and loss value of the sintered substrates were 57.8 and 0.05 respectively, at 2.4 GHz. The variation of relative permittivity on temperature dependence in the range of −40 to 80 °C was about 23%, while the average linear coefficient of thermal expansion was 6.9 ppm/°C in the measured temperature range of 100–300 °C. Moreover, the shelf life of the tape over 28 months was studied through measurement of the stability of the dielectric properties over time. The obtained results open up a new strategy for the fabrication of next-generation low-cost functional ceramic devices prepared at an ultralow temperature in comparison to the high-temperature cofired ceramic and low-temperature cofired ceramic technologies.

History