cm400363n_si_001.pdf (356.06 kB)

Multifunctional Nanohybrids by Self-Assembly of Monodisperse Iron Oxide Nanoparticles and Nanolamellar MoS2 Plates

Download (356.06 kB)
journal contribution
posted on 25.06.2013, 00:00 by Yurii A. Kabachii, Alexandre S. Golub, Sergey Yu. Kochev, Natalia D. Lenenko, Sergey S. Abramchuk, Mikhail Yu. Antipin, Pyotr M. Valetsky, Barry D. Stein, Waleed E. Mahmoud, Ahmed A. Al-Ghamdi, Lyudmila M. Bronstein
Here, we report the synthesis, characterization, and properties of novel nanohybrids formed by self-assembly of negatively charged MoS2 nanoplates and positively charged iron oxide nanoparticles (NPs) of two different sizes, 5.1 and 11.6 nm. Iron oxide NPs were functionalized with an amphiphilic random copolymer, quaternized poly­(2-(di­methyl­amino)­ethyl metacrylate-co-stearyl meta­crylate), synthesized for the first time using atom transfer radical polymerization. The influence of the MoS2 fraction and the iron oxide NP size on the structure of the nanohybrids has been studied. Surprisingly, larger NPs retained a larger fraction of the copolymer, thus requiring more MoS2 nanoplates for charge compensation. The nanohybrid based on 11.6 nm NPs was studied in oxidation of sulfide ions. This reaction could be used for removing the dangerous pollutant from wastewater and in the production of hydrogen from water using solar energy. We demonstrated a higher catalytic activity of the NP/MoS2 nanohybrid than that of merely dispersed MoS2 in catalytic oxidation of sulfide ions and facile magnetic recovery of the catalyst after the reaction.