cm052067x_si_001.pdf (49.34 kB)

Multifunctional Nano-Architecture for Biomedical Applications

Download (49.34 kB)
journal contribution
posted on 04.04.2006, 00:00 by Dongling Ma, Jingwen Guan, Stéphane Dénommée, Gary Enright, Teodor Veres, Benoit Simard
A multifunctional architecture for biomedical applications has been developed by deliberately combining the useful functions of superparamagnetism, luminescence, and surface functionality into one material. Good control of the core−shell architecture has been achieved by employing a sol−gel synthesis. Superparamagnetic iron oxide nanoparticles are first coated with silica to isolate the magnetic core from the surrounding. Subsequently, the dye molecules are doped inside a second silica shell to improve photostability and allow for versatile surface functionalities. The architecture has been characterized by transmission electron microscopy, UV−vis absorption and emission spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and magnetometry. The hybrid nanoparticles exhibit improved superparamagnetic behavior over the as-received nanoparticles with a significant decrease in the blocking temperature. The architecture shows emission properties similar to those of the free dye molecules, suggesting that the first silica shell successfully prevents luminescence quenching by minimizing dye−magnetic core interactions.