nl9b03792_si_001.pdf (4.99 MB)
Download file

Molecularly Thin Electrolyte for All Solid-State Nonvolatile Two-Dimensional Crystal Memory

Download (4.99 MB)
journal contribution
posted on 08.11.2019, 21:44 by Jierui Liang, Ke Xu, Maokun Wu, Benjamin M. Hunt, Wei-Hua Wang, Kyeongjae Cho, Susan K. Fullerton-Shirey
A molecularly thin electrolyte is developed to demonstrate a nonvolatile, solid-state, one-transistor (1T) memory based on an electric-double-layer (EDL) gated WSe2 field-effect transistor (FET). The custom-designed monolayer electrolyte consists of cobalt crown ether phthalocyanine and lithium ions, which are positioned by field-effect at either the surface of the WSe2 channel or an h-BN capping layer to achieve “1” or “0”, respectively. Bistability in the monolayer electrolyte memory is significantly improved by the h-BN cap with density functional theory (DFT) calculations showing enhanced trapping of Li+ near h-BN due to a ∼1.34 eV increase in the absolute value of the adsorption energy compared to vacuum. The threshold voltage shift between the two states corresponds to a change in charge density of ∼2.5 × 1012 cm–2, and an On/Off ratio exceeding 104 at a back gate voltage of 0 V. The On/Off ratio remains stable after 1000 cycles and the retention time for each state exceeds 6 h (max measured). When the write time approaches 1 ms, the On/Off ratio remains >102, showing that the monolayer electrolyte-gated FET can respond on time scales similar to existing flash memory. The data suggest that faster switching times and lower switching voltages could be feasible by top gating.