posted on 2022-03-04, 18:44authored byJanet
S. Anderson, Griselda Hernández, David M. LeMaster
NMR relaxation analysis
of the mobile residues in globular proteins
is sensitive to the form of the experimentally fitted internal autocorrelation
function, which is used to represent that motion. Different order
parameter representations can precisely fit the same set of 15N R1, R2,
and heteronuclear NOE measurements while yielding significantly divergent
predictions of the underlying autocorrelation functions, indicating
the insufficiency of these experimental relaxation data for assessing
which order parameter representation provides the most physically
realistic predictions. Molecular dynamics simulations offer an unparalleled
capability for discriminating among different order parameter representations
to assess which representation can most accurately model a wide range
of physically realistic autocorrelation functions. Six currently utilized
AMBER and CHARMM force fields were applied to calculate autocorrelation
functions for the backbone H–N bond vectors of ubiquitin as
an operational test set. An optimized time constant-constrained triexponential
(TCCT) representation was shown to markedly outperform the widely
used (Sf2,τs,S2) extended
Lipari–Szabo representation and the more closely related (Sf2,SH2, SN2) Larmor frequency-selective representation.
Optimization of the TCCT representation at both 600 and 900 MHz 1H converged to the same parameterization. The higher magnetic
field yielded systematically larger deviations in the back-prediction
of the autocorrelation functions for the mobile amides, indicating
little added benefit from multiple field measurements in analyzing
amides that lack slower (∼ms) exchange line-broadening effects.
Experimental 15N relaxation data efficiently distinguished
among the different force fields with regard to their prediction of
ubiquitin backbone conformational dynamics in the ps–ns time
frame. While the earlier AMBER 99SB and CHARMM27 force fields underestimate
the scale of backbone dynamics, which occur in this time frame, AMBER
14SB provided the most consistent predictions for the well-averaged
highly mobile C-terminal residues of ubiquitin.