American Chemical Society
Browse

Modulation of High-Spin Co(II) in Li/Co-MOFs as Efficient Fenton-like Catalysts

Download (727.33 kB)
journal contribution
posted on 2021-07-23, 13:03 authored by Meiling Li, Guojian Ren, Weiting Yang, Fuxiang Wang, Nana Ma, Xiaolei Fan, Qinhe Pan
Developing high-performance catalysts toward the Fenton reaction is important for environmental protection and sustainable development, yet it is still challenging. The high-spin states of first-row transition metal atoms with tetrahedral coordination provide a flexible electronic environment to activate the catalyst and elevate its catalytic activity. As a type of material with adjustable structures, metal–organic frameworks (MOFs) are excellent candidate catalysts as they can accurately regulate the coordination configurations of metal ions. In this paper, we investigate and summarize the direct formation of bimetallic carboxylate Li/Co-MOFs with tetrahedral coordination metal centers in a mixed H2O/polar organic solvent system. The induction of Li­(I) ions is manifested in the generation of hydroxides during the dissociation of the Co­(II) solvation structure to trigger the tetrahedral coordination behavior of Co­(II). These Li/Co-MOFs containing high-spin Co­(II) centers can serve as highly efficient Fenton-like catalysts for organics. This study provides a promising strategy for rational design of MOF-based catalysts with high-spin metal centers for application in environment governance.

History