American Chemical Society
Browse
jp1c09258_si_001.pdf (3.93 MB)

Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments

Download (3.93 MB)
journal contribution
posted on 2022-01-14, 20:06 authored by Ivan R. Sasselli, Zois Syrgiannis, Nicholas A. Sather, Liam C. Palmer, Samuel I. Stupp
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.

History