American Chemical Society
ac5b03326_si_001.pdf (742.61 kB)

Mitochondria-Directed Fluorescent Probe for the Detection of Hydrogen Peroxide near Mitochondrial DNA

Download (742.61 kB)
journal contribution
posted on 2015-10-20, 00:00 authored by Ying Wen, Keyin Liu, Huiran Yang, Yi Liu, Liming Chen, Zhongkuan Liu, Chunhui Huang, Tao Yi
It is important to detect hydrogen peroxide (H2O2) near mitochondrial DNA (mtDNA) because mtDNA is more prone to oxidative attack than nuclear DNA (nDNA). In this study, a mitochondria-targeted fluorescence probe, pep3-NP1, has been designed and synthesized. The probe contains a DNA-binding peptide, a H2O2 fluorescence reporter, and a positively charged red emissive styryl dye to facilitate accumulation in mitochondria. Due to groove binding of the peptide with DNA, the styryl dye of pep3-NP1 intercalated into the bases of DNA, leading to an increase in red fluorescence intensity (centered at 646 nm) and quantum yield. In this case, pep3-NP1 was a turn-on probe for labeling DNA. Subcellular locations of pep3-NP1 and MitoTracker suggested that pep3-NP1 mostly accumulated in the mitochondria of live cells. Namely, as an intracellular DNA marker, pep3-NP1 bound to mtDNA. In the presence of H2O2, pep3-NP1 emitted green fluorescence (centered at 555 nm). Thus, the ratio of green with red fluorescence of pep3-NP1 was suitable to reflect the change of the H2O2 level near mtDNA in living cells. The detecting limit for H2O2 was estimated at 2.9 and 5.0 μM in vitro and in cultured cells, respectively. The development of pep3-NP1 could help in studies to protect mtDNA from oxidative stress.