American Chemical Society
Browse
am9b01253_si_001.pdf (2.17 MB)

Micelle-Embedded Layer-by-Layer Coating with Catechol and Phenylboronic Acid for Tunable Drug Loading, Sustained Release, Mild Tissue Response, and Selective Cell Fate for Re-endothelialization

Download (2.17 MB)
journal contribution
posted on 2019-02-12, 00:00 authored by Jiang Lu, Weihua Zhuang, Linhua Li, Bo Zhang, Li Yang, Dongping Liu, Hongchi Yu, Rifang Luo, Yunbing Wang
Tunable/sustained drug loading/releasing are of significance in addressing low cytotoxicity, long-term performance, and localized mild healing response in biomedical applications. With an ingenious design, a self-healing sandwiched layer-by-layer (LBL) coating was constructed by using chitosan/heparin as adopted polyelectrolytes with embedding of micelles, in which the chitosan backbone was grafted with catechol and the micelle was modified with exposed phenylboronic acid, endowing the coating with enhanced stability by abundant interactions among coating components (e.g., boric acid ester bond formation, weak intermolecular cross-linking, π–π interactions, and H-bonding). Moreover, rapamycin and atorvastatin calcium were selected as drug candidates and loaded into micelles, followed by drug-releasing behavior study. It was found that the LBL coating maintained a linear growth mode up to 30 cycles, giving a favorable tunability of coating construction and drug loading. The coating could also support sustained release of payloads and provide wild tissue response. With the systematic in vitro and in vivo study, such catechol–phenylboronic acid-enhanced LBL coating with drug loading would also address enhanced antiplatelet adhesion/activation and direct cell fate of endothelial cells and smooth muscle cells via tuning of coating cycles and loaded drugs. With modular assembly, such coating indicated potential for achieving enhanced re-endothelialization for vascular implants.

History