posted on 2022-03-15, 21:35authored byEmma L. Wood, Cristina Greco, Dimitri A. Ivanov, Kurt Kremer, Kostas Ch. Daoulas
Board-shaped polymers
form sanidic mesophases: assemblies of parallel
lamellae of stacked polymer backbones separated by disordered side
chains. Sanidics vary significantly with respect to polymer order
inside their lamellae, making them “stepping stones”
toward the crystalline state. Therefore, they are potentially interesting
for studying crystallization and technological applications. Building
on earlier mesoscopic models of the most disordered sanidics Σd, we focus on the other extreme, near-crystalline order, and
develop a generic model that captures a highly ordered Σr mesophase. Polymers are described by generic hindered-rotation
chains. Anisotropic nonbonded potentials, with strengths comparable
to the thermal energy, mimic board-like monomer shapes. Lamellae equilibrated
with Monte Carlo simulations, for a broad range of model parameters,
have intralamellar order typical for Σr mesophases:
periodically stacked polymers that are mutually registered along their
backbones. Our mesophase shows registration on both monomer and chain
levels. We calculate scattering patterns and compare with data published
for highly ordered sanidic mesophases of two different polymers: polyesters
and polypeptoids. Most of the generic structural features that were
identified in these experiments are present in our model. However,
our mesophase has correlations between chains located in different
lamellae and is therefore closer to the crystalline state than the
experimental samples.