posted on 2022-06-15, 16:03authored byBeverly Fu, Azadeh Nazemi, Benjamin J. Levin, Zhongyue Yang, Heather J. Kulik, Emily P. Balskus
Gut microbial decarboxylation
of amino acid-derived arylacetates
is a chemically challenging enzymatic transformation which generates
small molecules that impact host physiology. The glycyl radical enzyme
(GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radical decarboxylation
of indole-3-acetate (I3A) to yield skatole, a disease-associated metabolite
produced in the guts of swine and ruminants. Despite the importance
of IAD, our understanding of its mechanism is limited. Here, we characterize
the mechanism of Ou IAD, evaluating previously proposed
hypotheses of: (1) a Kolbe-type decarboxylation reaction involving
an initial 1-e– oxidation of the carboxylate of
I3A or (2) a hydrogen atom abstraction from the α-carbon of
I3A to generate an initial carbon-centered radical. Site-directed
mutagenesis, kinetic isotope effect experiments, analysis of reactions
performed in D2O, and computational modeling are consistent
with a mechanism involving initial hydrogen atom transfer. This finding
expands the types of radical mechanisms employed by GRE decarboxylases
and non-oxidative decarboxylases, more broadly. Elucidating the mechanism
of IAD decarboxylation enhances our understanding of radical enzymes
and may inform downstream efforts to modulate this disease-associated
metabolism.