posted on 2015-12-16, 22:52authored byUthpala Seneviratne, Luiz C. Godoy, John S. Wishnok, Gerald N. Wogan, Steven R. Tannenbaum
Nitrosothiols
(RSNOs) have been proposed as important intermediates
in nitric oxide (NO•) metabolism, storage, and transport
as well as mediators in numerous NO-signaling pathways. RSNO levels
are finely regulated, and dysregulation is associated with the etiology
of several pathologies. Current methods for RSNO quantification depend
on indirect assays that limit their overall specificity and reliability.
Recent developments of phosphine-based chemical probes constitute
a promising approach for the direct detection of RSNOs. We report
here results from a detailed mechanistic and kinetic study for trapping
RSNOs by three distinct phosphine probes, including structural identification
of novel intermediates and stability studies under physiological conditions.
We further show that a triarylphosphine-thiophenyl ester can be used
in the absolute quantification of endogenous GSNO in several cancer
cell lines, while retaining the elements of the SNO functional group,
using an LC–MS-based assay. Finally, we demonstrate that a
common product ion (m/z = 309.0),
derived from phosphine–RSNO adducts, can be used for the detection
of other low-molecular weight nitrosothiols (LMW-RSNOs) in biological
samples. Collectively, these findings establish a platform for the
phosphine ligation-based, specific and direct detection of RSNOs in
biological samples, a powerful tool for expanding the knowledge of
the biology and chemistry of NO•-mediated phenomena.