American Chemical Society
Browse
ac3c03256_si_002.pdf (870.65 kB)

Measuring Liquid-into-Liquid Diffusion Coefficients by Dissolving Microdroplet Electroanalysis

Download (870.65 kB)
journal contribution
posted on 2023-12-12, 04:33 authored by Ashutosh Rana, Christophe Renault, Jeffrey E. Dick
Diffusion is a fundamental process in various domains, such as pollution control, drug delivery, and isotope separation. Accurately measuring the diffusion coefficients (D) of one liquid into another often encounters challenges stemming from intermolecular interactions, precise observations at the liquid interface, convection, etc. Here, we present an innovative electrochemical methodology for determining the diffusion coefficient of a liquid into another liquid. The method involves precisely tracking the lifetime of a nonaqueous droplet. An organic droplet is placed on an ultramicroelectrode surrounded by an aqueous solution of potassium hexacyanoferrate­(II/III). The droplet initially blocks the reduction or oxidation of the redox species. As the droplet dissolves, giving access to the conductive microelectrode surface, a continuously increasing current is observed in voltammetry and the amperometric it response. The electrochemical response thus directly reports on the flux of redox species on the electrode surface, allowing us to precisely determine the lifetime of the droplet. D values are directly determined through a combination of electrochemical analysis and the principles of droplet dissolution. We demonstrate the quantification of 1,2-dichloroethane and nitrobenzene into water, yielding diffusion coefficients of (11.3 ± 1.2) × 10–6 cm2/s and (5.2 ± 1.1) × 10–6 cm2/s, respectively. This work establishes a reliable electrochemical approach for quantifying diffusion coefficients based on droplet lifetime analysis.

History