American Chemical Society
Browse
nl0256412_si_002.pdf (183.21 kB)
Download file

Macroscopic Alignment of Silver Nanoparticles in Reverse Hexagonal Liquid Crystalline Templates

Download (183.21 kB)
journal contribution
posted on 2002-10-31, 00:00 authored by Martin Andersson, Viveka Alfredsson, Per Kjellin, Anders E. C. Palmqvist
A flexible method of preparing and macroscopically aligning nanoparticles of crystalline silver into millimeter long fibers is presented. The approach utilizes the dual functionality of a reverse hexagonal liquid crystalline template containing a built-in reducing agent facing the aqueous domain. The method is advantageous in that its slow kinetics allows for a thorough introduction of a silver salt into the liquid crystal before the reduction takes place, allowing for an efficient loading of the template and a retained mesoscopic ordering as evidenced by SAXS. It was confirmed by 1H NMR that the oxyethylene groups of the amphiphilic polymer reduce the silver ions while being oxidized to aldehydes. The silver nanoparticles are uniform in size and in the same size range as the diameter of the aqueous domain of the liquid crystal (3 nm), further supporting that the silver particles form inside the liquid crystal. TEM images confirm the macroscopic alignment of silver nanoparticles into fibrils and the packing of fibrils into millimeter long fibers. The diameter of the fibrils and fibers ranges from 30 nm to several hundreds of micrometers. Electron diffraction analysis of a collection of silver nanoparticles confirms their crystallinity as three diffraction rings could be indexed to the face centered cubic structure of silver. A key to the successful macroscopic alignment of the nanoparticles is that the particles are formed inside the liquid crystal, thus minimizing the need for their diffusion into and inside the liquid crystal.

History