posted on 2023-01-25, 21:33authored byAli Macknojia, Aditya Ayyagari, Dario Zambrano, Andreas Rosenkranz, Elena V. Shevchenko, Diana Berman
Toward the goal of achieving superlubricity,
or near-zero friction,
in industrially relevant material systems, solution-processed multilayer
Ti3C2Tx-MoS2 blends are spray-coated onto rough 52100-grade steel surfaces
as a solid lubricant. The tribological performance was assessed in
a ball-on-disk configuration in a unidirectional sliding mode. The
test results indicate that Ti3C2Tx-MoS2 nanocomposites led to superlubricious
states, which has hitherto been unreported for both individual pristine
materials, MoS2 and Ti3C2Tx, under macroscale sliding conditions, indicating
a synergistic mechanism enabling the superlative performance. The
processing, structure, and property correlation were studied to understand
the underlying phenomena. Raman spectroscopy, scanning electron microscopy,
and transmission electron microscopy revealed the formation of an in situ robust tribolayer that was responsible for the performance
at high contact pressures (>1.1 GPa) and sliding speeds (0.1 m/s).
This report presents the lowest friction obtained by either MoS2 or MXene or any combination of the two so far.