jf0c05077_si_002.pdf (275.33 kB)
Download file

Lycopene Prevents DEHP-Induced Liver Lipid Metabolism Disorder by Inhibiting the HIF-1α-Induced PPARα/PPARγ/FXR/LXR System

Download (275.33 kB)
journal contribution
posted on 05.10.2020, 18:07 authored by Yi Zhao, De-Xing Ma, Hong-Guang Wang, Mu-Zi Li, Milton Talukder, Hao-Ran Wang, Jin-Long Li
Di­(2-ethylhexyl) phthalate (DEHP) is a widespread pollutant that badly affects animals and human health. Lycopene (LYC) has been used as a dietary supplement that has effective antioxidant and antiobesity functions. The present goal was to understand the molecular mechanisms of LYC preventing DEHP-induced lipid metabolism of the liver. The mice were intragastrically administered with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg). Here, we found that LYC attenuated DEHP-caused hepatic histopathological lesions including steatosis. Hematological and biochemical analyses revealed that LYC ameliorated DEHP-caused liver function and lipid metabolism disorders. DEHP caused lipid metabolism disorders via activating the peroxisome proliferator activated receptor α/γ (PPARα/γ) signal transducer and Farnesoid X receptor (FXR)/liver X receptor (LXR) signaling pathway. As a major regulator of lipid metabolism, hypoxia-inducible factor-1α (HIF-1α) system was elevated with increased fatty degeneration under DEHP exposure. However, LYC could decrease the levels of HIF-1α/PPARα/PPARγ/FXR/LXR signaling pathway-related factors. Our research indicated that LYC could prevent DEHP-induced lipid metabolism disorders via inhibiting the HIF-1α-mediated PPARα/PPARγ/FXR/LXR system. This study may provide a possible molecular mechanism for fatty liver induced by DEHP.

History