American Chemical Society
Browse

Liquid Crystalline Perylene Diimide Outperforming Nonliquid Crystalline Counterpart: Higher Power Conversion Efficiencies (PCEs) in Bulk Heterojunction (BHJ) Cells and Higher Electron Mobility in Space Charge Limited Current (SCLC) Devices

Download (98.05 kB)
journal contribution
posted on 2013-11-13, 00:00 authored by Youdi Zhang, Helin Wang, Yi Xiao, Ligang Wang, Dequan Shi, Chuanhui Cheng
In this work, we propose the application of liquid crystalline acceptors as a potential means to improve the performances of bulk heterojunction (BHJ) organic solar cells. LC-1, a structurally-simple perylene diimide (PDI), has been adopted as a model for thorough investigation. It exhibits a broad temperature range of liquid crystalline (LC) phase from 41 °C to 158 °C, and its LC properties have been characterized by differental scanning calorimetry (DSC), polarization optical microscopy (POM), and X-ray diffraction (XRD). The BHJ devices, using P3HT:LC-1 (1:2) as an organic photovoltaic active layer undergoing thermal annealing at 120 °C, shows an optimized efficiency of 0.94 %. By contrast, the devices based on PDI-1, a nonliquid crystalline PDI counterpart, only obtain a much lower efficiency of 0.22%. Atomic force microscopy (AFM) images confirm that the active layers composed of P3HT:LC-1 have smooth and ordered morphology. In space charge limited current (SCLC) devices fabricated via a spin-coating technique, LC-1 shows the intrinsic electron mobility of 2.85 × 10–4 cm2/(V s) (at 0.3 MV/cm) which is almost 5 times that of PDI-1 (5.83 × 10–5 cm2/(V s)) under the same conditions for thermal annealing at 120 °C.

History