American Chemical Society
Browse
ab1c00514_si_001.pdf (538.51 kB)

Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation

Download (538.51 kB)
journal contribution
posted on 2021-07-23, 17:40 authored by Anurag Kumar Singh, Saumitra Sen Singh, Aaina Singh Rathore, Surya Pratap Singh, Gaurav Mishra, Rajendra Awasthi, Sunil Kumar Mishra, Vibhav Gautam, Santosh Kumar Singh
Selective permeability of the blood–brain barrier limits effective treatment of neurodegenerative disorders. In the present study, brain-targeted lipid-coated mesoporous silica nanoparticles (MSNs) containing berberine (BBR) were synthesized for the effective treatment of Alzheimer’s disease (AD). The study involved synthesis of Mobil Composition of Matter-41 (MCM-41) mesoporous silica nanoparticles (MSNs), BBR loading, and lipid coating of MSNs (MSNs-BBR-L) and in vitro and in vivo characterization of MSNs-BBR-L. The liposomes (for lipid coating) were prepared by the thin-film hydration method. Transmission electron microscopy (TEM) images indicated 5 nm thickness of the lipid coating. Dynamic light scattering (DLS) and TEM results confirmed that the size of synthesized MSNs-BBR-L was in the range of 80–100 nm. The X-ray diffraction (XRD) pattern demonstrated retention of the ordered structure of BBR after encapsulation and lipid coating. Fourier transform infrared (FTIR) spectrum confirmed the formation of a lipid coat over the MSN particles. MSNs-BBR-L displayed significantly (p < 0.05) higher acetylcholine esterase (AChE) inhibitory activity. The study confirmed significant (p < 0.05) amyloid fibrillation inhibition and decreased the malondialdehyde (MDA) level by MSNs-BBR-L. Pure BBR- and MSNs-BBR-L-treated AD animals showed a significant decrease in the BACE-1 level compared to scopolamine-intoxicated mice. Eight times higher area under the curve for MSNs-BBR-L (2400 ± 27.44 ng h/mL) was recorded compared to the pure BBR (295.5 ± 0.755 ng h/mL). Overall, these results highlight the utility of MSNs-BBR-L as promising drug delivery vehicles for brain delivery of drugs.

History