mt0c00897_si_001.pdf (1.07 MB)

Label-Free Detection of Staphylococcus aureus Based on Bacteria-Imprinted Polymer and Turn-on Fluorescence Probes

Download (1.07 MB)
journal contribution
posted on 15.12.2020, 20:08 by Yuanyuan Guo, Juan Li, Xiuling Song, Kun Xu, Juan Wang, Chao Zhao
The effective identification and quantitative determination of Staphylococcus aureus is a major public health concern. Here, an innovative strategy that combines a bacteria-imprinted polydimethylsiloxane film for bacterial recognition and fluorescence resonance energy transfer platform for turn-on fluorescence sensing is demonstrated. The bacteria-imprinted polydimethylsiloxane film was facilely fabricated to generate corresponding specific sites on the polydimethylsiloxane surface via stamp imprinting using Staphylococcus aureus as template followed by modification with 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The fluorescence resonance energy transfer platform was developed through electrostatic interaction between citrate-functional copper clusters and dopamine-stabilized gold nanoparticles. When the Staphylococcus aureus are present, the 1H,1H,2H,2H-perfluorooctyltriethoxysilane-modified bacteria-imprinted polydimethylsiloxane film can precisely capture the target; subsequently, the negatively charged bacteria compete with citrate-functional copper clusters and bind to dopamine-stabilized gold nanoparticles, leading to the fluorescence recovery of citrate-functional copper clusters. The entire detection process was achieved within 135 min, showing a wide linear calibration response from 10 to 1 × 107 cfu mL–1 with a low detection limit of 11.12 cfu mL–1. Furthermore, the recoveries from spiked samples were from 97.7 to 101.90% with relative standard derivations lower than 10%. The established label-free assay of measuring Staphylococcus aureus is rapid, sensitive, specific, and efficient.

History