American Chemical Society
Browse

LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum

Download (860.86 kB)
journal contribution
posted on 2014-05-14, 00:00 authored by Srdjan S. Aćimović, Maria A. Ortega, Vanesa Sanz, Johann Berthelot, Jose L. Garcia-Cordero, Jan Renger, Sebastian J. Maerkl, Mark P. Kreuzer, Romain Quidant
Label-free biosensing based on metallic nanoparticles supporting localized surface plasmon resonances (LSPR) has recently received growing interest (Anker, J. N., et al. Nat. Mater. 2008, 7, 442–453). Besides its competitive sensitivity (Yonzon, C. R., et al. J. Am. Chem. Soc. 2004, 126, 12669–12676; Svendendahl, M., et al. Nano Lett. 2009, 9, 4428–4433) when compared to the surface plasmon resonance (SPR) approach based on extended metal films, LSPR biosensing features a high-end miniaturization potential and a significant reduction of the interrogation device bulkiness, positioning itself as a promising candidate for point-of-care diagnostic and field applications. Here, we present the first, paralleled LSPR lab-on-a-chip realization that goes well beyond the state-of-the-art, by uniting the latest advances in plasmonics, nanofabrication, microfluidics, and surface chemistry. Our system offers parallel, real-time inspection of 32 sensing sites distributed across 8 independent microfluidic channels with very high reproducibility/repeatability. This enables us to test various sensing strategies for the detection of biomolecules. In particular we demonstrate the fast detection of relevant cancer biomarkers (human alpha-feto-protein and prostate specific antigen) down to concentrations of 500 pg/mL in a complex matrix consisting of 50% human serum.

History