posted on 2015-12-17, 10:22authored byBoris Dzikovski, Vsevolod Livshits, Jack Freed
The large values of spin relaxation
enhancement (RE) for PC spin-labels
in the phospholipid membrane induced by paramagnetic metal salts dissolved
in the aqueous phase can be explained by Heisenberg spin exchange
due to conformational fluctuations of the nitroxide group as a result
of membrane fluidity, flexibility of lipid chains, and, possibly,
amphiphilic nature of the nitroxide label. Whether the magnetic interaction
occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole
(Gd) mechanism, it is essential for the paramagnetic ion to get into
close proximity to the nitroxide moiety for efficient RE. For different
salts of Ni the RE in phosphatidylcholine membranes follows the anionic
Hofmeister series and reflects anion adsorption followed by anion-driven
attraction of paramagnetic cations on the choline groups. This adsorption
is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent
is a molecule in water solution that can disrupt the hydrogen bonding
network between water molecules.) However, there is no anionic dependence
of RE for model membranes made from negatively charged lipids devoid
of choline groups. We used Ni-induced RE to study the thermodynamics
and electrostatics of ion/membrane interactions. We also studied the
effect of membrane composition and the phase state on the RE values.
In membranes with cholesterol a significant difference is observed
between PC labels with nitroxide tethers long enough vs not long enough
to reach deep into the membrane hydrophobic core behind the area of
fused cholesterol rings. This study indicates one must be cautious
in interpreting data obtained by PC labels in fluid membranes in terms
of probing membrane properties at different immersion depths when
it can be affected by paramagnetic species at the membrane surface.