jp6b04870_si_001.pdf (1.14 MB)

Interaction of Biologically Active Flavins inside Bile Salt Aggregates: Molecular Level Investigation

Download (1.14 MB)
journal contribution
posted on 24.08.2016, 00:00 by Banibrata Maity, Sayeed Ashique Ahmed, Debabrata Seth
In this work we have studied the photophysics of biologically active flavin molecule lumichrome (LCM) in different bile-salt aggregates. With alteration of the functional groups of the bile salts, the photophysics of confined fluorophore is largely affected and shows difference in their spectral behavior. This study also reveals the selective prototropic species of LCM present in bile salt aggregates. In the presence of the bile salt aggregates, LCM molecule shows excitation and emission wavelength-dependent emission properties, indicating switch over of the structural change of different prototropic form of the LCM molecule. The observation of higher rotational relaxation time in NaDC aggregates compared to NaTC aggregates clearly reflects that NaDC aggregates are more rigid due to its greater hydrophobicity and large in size, which is capable to bind the guest molecule more into their nanoconfined medium. Moreover, due to less acidic nature, NaDC aggregates have more ability to accept hydrogen bond from the LCM molecule and show the selective formation of isoalloxazine N10 anion (A1 monoanionic form) of LCM.