American Chemical Society
Browse
es0c02834_si_001.pdf (1.69 MB)

Integrated Omics Elucidate the Mechanisms Driving the Rapid Biodegradation of Deepwater Horizon Oil in Intertidal Sediments Undergoing Oxic–Anoxic Cycles

Download (1.69 MB)
journal contribution
posted on 2020-08-05, 19:43 authored by Smruthi Karthikeyan, Minjae Kim, Patrick Heritier-Robbins, Janet K. Hatt, Jim C. Spain, Will A. Overholt, Markus Huettel, Joel E. Kostka, Konstantinos T. Konstantinidis
Crude oil buried in intertidal sands may be exposed to alternating oxic and anoxic conditions but the effect of this tidally induced biogeochemical oscillation remains poorly understood, limiting the effectiveness of remediation and managing efforts after oil spills. Here, we used a combination of metatranscriptomics and genome-resolved metagenomics to study microbial activities in oil-contaminated sediments during oxic–anoxic cycles in laboratory chambers that closely emulated in situ conditions. Approximately 5-fold higher reductions in the total petroleum hydrocarbons were observed in the oxic as compared to the anoxic phases with a relatively constant ratio between aerobic and anaerobic oil decomposition rates even after prolonged anoxic conditions. Metatranscriptomics analysis indicated that the oxic phases promoted oil biodegradation in subsequent anoxic phases by microbially mediated reoxidation of alternative electron acceptors like sulfide and by providing degradation-limiting nitrogen through biological nitrogen fixation. Most population genomes reconstructed from the mesocosm samples represented uncultured taxa and were present typically as members of the rare biosphere in metagenomic data from uncontaminated field samples, implying that the intertidal communities are adapted to changes in redox conditions. Collectively, these results have important implications for enhancing oil spill remediation efforts in beach sands and coastal sediments and underscore the role of uncultured taxa in such efforts.

History