posted on 2018-03-06, 00:00authored byPengjun Zhao, Manhyung Han, Wenping Yin, Xing Zhao, Seul Gi Kim, Yaping Yan, Minwoo Kim, Young Jae Song, Nam Gyu Park, Hyun Suk Jung
Currently,
the most efficient perovskite solar cells (PSCs) mainly use planar
and mesoporous titanium dioxide (TiO2) as an electron-transport
layer (ETL). However, because of its intrinsic photocatalytic properties,
TiO2 can decompose perovskite absorber and lead to poor
stability under solar illumination (ultraviolet light). Herein, a
simplified architectural ETL-free PSC with enhanced efficiency and
outstanding photostability is produced by the facile deposition of
a bathocuproine (BCP) interlayer. Power conversion efficiency of the
ETL-free PSC improves from 15.56 to 19.07% after inserting the BCP
layer, which is the highest efficiency reported for PSCs involving
an ETL-free architecture, versus 19.03% for the n–i–p
full device using TiO2 as an ETL. The BCP interlayer has
been demonstrated to have several positive effects on the photovoltaic
performances of devices, such as “modulation doping”
of the perovskite layer, modification of FTO surface work function,
and enhancing the charge-transfer efficiency between FTO and perovskite. Moreover, the BCP-based ETL-free devices exhibit outstanding photostability:
the unencapsulated BCP-based ETL-free PSCs retain over 90% of their
initial efficiencies after 1000 h of storage in air and maintain 92.2%
after 450 h of exposure to full solar irradiation (without a UV filter),
compared to only 14.1% in the n–i–p full cells under
the same condition.