American Chemical Society
cb8b00555_si_001.pdf (4 MB)

Inhibiting Epidermal Growth Factor Receptor Dimerization and Signaling Through Targeted Delivery of a Juxtamembrane Domain Peptide Mimic

Download (4 MB)
journal contribution
posted on 2018-08-22, 00:00 authored by Janessa Gerhart, Anastasia F. Thévenin, Elizabeth Bloch, Kelly E. King, Damien Thévenin
Overexpression and deregulation of the epidermal growth factor receptor (EGFR) are implicated in multiple human cancers and therefore are a focus for the development of therapeutics. Current strategies aimed at inhibiting EGFR activity include monoclonal antibodies and tyrosine kinase inhibitors. However, activating mutations severely limit the efficacy of these therapeutics. There is thus a growing need for novel methods to inhibit EGFR. One promising approach involves blocking the association of the cytoplasmic juxtamembrane (JM) domain of EGFR, which has been shown to be essential for receptor dimerization and kinase function. Here, we aim to improve the selectivity and efficacy of an EGFR JM peptide mimic by utilizing the pH­(low) insertion peptide (pHLIP), a unique molecule that can selectively target cancer cells solely based on their extracellular acidity. This delivery strategy potentially allows for more selective targeting to tumors than current methods and for anchoring the peptide mimic to the cytoplasmic leaflet of the plasma membrane, increasing its local concentration and thus efficacy. We show that the conjugated construct is capable of inhibiting EGFR phosphorylation and downstream signaling and of inducing concentration- and pH-dependent toxicity in cervical cancer cells. We envision that this approach could be expanded to the modulation of other single-span membrane receptors whose activity is mediated by JM domains.