nn9b03683_si_001.pdf (685.33 kB)
Download fileInfrared Detectable MoS2 Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse
journal contribution
posted on 2019-09-04, 17:43 authored by Seung-Geun Kim, Seung-Hwan Kim, June Park, Gwang-Sik Kim, Jae-Hyeun Park, Krishna C. Saraswat, Jiyoung Kim, Hyun-Yong YuLayered two-dimensional
(2D) materials have entered the spotlight
as promising channel materials for future optoelectronic devices owing
to their excellent electrical and optoelectronic properties. However,
their limited photodetection range caused by their wide bandgap remains
a principal challenge in 2D layered materials-based phototransistors.
Here, we developed a germanium (Ge)-gated MoS2 phototransistor
that can detect light in the region from visible to infrared (λ
= 520–1550 nm) using a detection mechanism based on band bending
modulation. In addition, the Ge-gated MoS2 phototransistor
is proposed as a multilevel optic-neural synaptic device, which performs
both optical-sensing and synaptic functions on one device and is operated
in different current ranges according to the light conditions: dark,
visible, and infrared. This study is expected to contribute to the
development of 2D material-based phototransistors and synaptic devices
in next-generation optoelectronics.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
Ge-gated MoS 2 phototransistorArtificial Multilevel Optic-Neural Synapse Layeredphotodetection range2 D material-based phototransistorsInfrared Detectable MoS 2 Phototransistormaterials-based phototransistorsfuture optoelectronic devicesdetection mechanismchannel materials2 Dlight conditionsoptic-neural synaptic devicenext-generation optoelectronicssynaptic functionssynaptic devicesoptoelectronic properties