posted on 2022-09-08, 14:06authored byWennie Wang, Marco Favaro, Emily Chen, Lena Trotochaud, Hendrik Bluhm, Kyoung-Shin Choi, Roel van de Krol, David E. Starr, Giulia Galli
We present a combined computational and experimental
study of the
adsorption of water on the Mo-doped BiVO4(010) surface,
revealing how excess electrons influence the dissociation of water
and lead to hydroxyl-induced alterations of the surface electronic
structure. By comparing ambient pressure resonant photoemission spectroscopy
(AP-ResPES) measurements with the results of first-principles calculations,
we show that the dissociation of water on the stoichiometric Mo-doped
BiVO4(010) surface stabilizes the formation of a small
electron polaron on the VO4 tetrahedral site and leads
to an enhanced concentration of localized electronic charge at the
surface. Our calculations demonstrate that the dissociated water accounts
for the enhanced V4+ signal observed in ambient pressure
X-ray photoelectron spectroscopy and the enhanced signal of a small
electron polaron inter-band state observed in AP-ResPES measurements.
For ternary oxide surfaces, which may contain oxygen vacancies in
addition to other electron-donating dopants, our study reveals the
importance of defects in altering the surface reactivity toward water
and the concomitant water-induced modifications to the electronic
structure.