American Chemical Society
Browse
ao0c01723_si_001.pdf (130.43 kB)

Influence of Blood Collection Methods and Long-Term Plasma Storage on Quorum-Sensing Peptide Stability

Download (130.43 kB)
journal contribution
posted on 2020-06-23, 00:13 authored by Nathan Debunne, Anton De Spiegeleer, Dorian Depuydt, Yorick Janssens, Amélie Descamps, Evelien Wynendaele, Bart De Spiegeleer
Finding adequate biomarkers for rapid and accurate disease detection, prognosis, and therapy is increasingly important. Quorum-sensing peptides are herein a new emerging group, produced by bacteria, fungi, protozoa, and viruses, with blood being the most straightforward sample type to detect/quantitate them. However, detailed information about suitable blood sample collection methods and storage conditions for measuring these quorum-sensing peptides hampers further clinical research and development. Here, we first tested the time-dependent stability of a set of chemically diverse quorum-sensing peptides, spiked in blood at different temperatures (4, 21, and 37 °C) in four different ethylenediamine tetraacetic acid (EDTA)-containing plasma tubes (with different protein-stabilizing additives) over a period of up to 7.5 h. Next, we determined the storage stability of these quorum-sensing peptides in plasma at different temperatures (4, −35, and −80 °C). UPLC/MS–MS was used to selectively detect and quantify the spiked quorum-sensing peptides. The results of this study indicate that a cost-effective tube, designed for traditional proteomics and stored at 4 °C, is the preferred collection condition when quorum-sensing peptides need to be detected/quantified in human plasma. When the tubes are handled at room temperature (21 °C), a more specialized tube is required. Long-term storage of plasma samples, even under low-temperature conditions (−80 °C), indicates rapid degradation of certain quorum-sensing peptides.

History