American Chemical Society
am0c16021_si_001.pdf (878.01 kB)

Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors

Download (878.01 kB)
journal contribution
posted on 2021-01-11, 10:13 authored by Jack E. N. Swallow, Robert G. Palgrave, Philip A. E. Murgatroyd, Anna Regoutz, Michael Lorenz, Anna Hassa, Marius Grundmann, Holger von Wenckstern, Joel B. Varley, Tim D. Veal
The electronic and optical properties of (InxGa1–x)2O3 alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In2O3 phase to the monoclinic β-Ga2O3 phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In2O3 and use of Ga2O3 as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential.