American Chemical Society
Browse

Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC)2OCP][OCP]

Download (1 MB)
journal contribution
posted on 2021-03-09, 22:16 authored by Jacob E. Walley, Levi S. Warring, Erik Kertész, Guocang Wang, Diane A. Dickie, Zoltán Benkő, Robert J. Gilliard
The synthesis and thermal redox chemistry of the first antimony (Sb)– and bismuth (Bi)–phosphaketene adducts are described. When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)] is reacted with sodium 2-phosphaethynolate [Na­[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined with [Na­[OCP]·(dioxane)x], Sb– and Bi–phosphaketene complexes are isolated. Thus, NHC serves as an essential mediator for the reaction. Immediately after the formation of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the phosphaketene carbon atom, forming NHC–C­(O)­P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid state, 3 and 4 are dimeric with short intermolecular Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP salt, [(NHC)2OCP]­[OCP] (5). The formation of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to the known thermal reactivity for group 14 carbene–phosphaketene complexes, further highlighting the diverse reactivity of [OCP] with main-group elements. All new compounds have been fully characterized by single-crystal X-ray diffraction, multinuclear NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density functional theory (DFT).

History