American Chemical Society
Browse
- No file added yet -

In Situ Monitoring of Extracellular K+ Using the Potentiometric Mode of Scanning Electrochemical Microscopy with a Carbon-Based Potassium Ion-Selective Tip

Download (136.51 kB)
journal contribution
posted on 2022-02-25, 22:13 authored by Yuxian Liao, Ting Jing, Fan Zhang, Pingang He
The expression of potassium channels can be related to the occurrence and development of tumors. Their change would affect K+ outflow. Thus, in situ monitoring of extracellular K+ shows a great significance. Herein, the dual-functional K+ ion-selective electrode as the scanning electrochemical microscopy (SECM) tip (K+-ISE SECM tip) has been developed for in situ monitoring of the extracellular K+. Based on multi-wall carbon nanotubes as a transduction layer, the K+-ISE SECM tip realizes both the plotting of approach curves to position the tip for in situ detection and the recording of potential responses. It shows a near Nernstian response, good selectivity, and excellent stability. Based on these characteristics, it was used to in situ monitor K+ concentrations ([K+]o) of three breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR-3 cells) at 3 μm above the cell, and [K+]o of MDA-MB-231 cells show the highest value, followed by MCF-7 cells and SK-BR-3 cells. K+ outflow induced by electrical stimulation or pH changes of the culture environment (Δ­[K+]o) was further determined, and the possible mechanism of K+ outflow was investigated with 4-aminopyridin (4-AP). MCF-7 cells present the largest value of Δ­[K+]o, followed by MDA-MB-231 cells and SK-BR-3 cells at all the stimulation potentials, and pH 6.50 shows the greatest impact on K+ outflow of the three cell lines. The pretreatment of 4-AP changed K+ outflow, probably due to the regulation of voltage-gated channels. These findings provide insight into a deep understanding of the microenvironment influence on K+ outflow, thereby reflecting the possible mechanism of potassium channels.

History