American Chemical Society
ja1c12442_si_001.pdf (3.19 MB)

In-Cell Quantification of Drugs by Magic-Angle Spinning Dynamic Nuclear Polarization NMR

Download (3.19 MB)
journal contribution
posted on 2022-04-06, 17:45 authored by Andrea Bertarello, Pierrick Berruyer, Markus Artelsmair, Charles S. Elmore, Sepideh Heydarkhan-Hagvall, Markus Schade, Elisabetta Chiarparin, Staffan Schantz, Lyndon Emsley
The determination of intracellular drug concentrations can provide a better understanding of the drug function and efficacy. Ideally, this should be performed nondestructively, with no modification of either the drug or the target, and with the capability to detect low amounts of the molecule of interest, in many cases in the μM to nM range (pmol to fmol per million cells). Unfortunately, it is currently challenging to have an experimental technique that provides direct quantitative measurements of intracellular drug concentrations that simultaneously satisfies these requirements. Here, we show that magic-angle spinning dynamic nuclear polarization (MAS DNP) can be used to fulfill these requirements. We apply a quantitative 15N MAS DNP approach in combination with 15N labeling to quantify the intracellular amount of the drug [15N]­CHIR-98014, an activator of the Wingless and Int-1 signaling pathway, determining intracellular drug amounts in the range of tens to hundreds of picomoles per million cells. This is, to our knowledge, the first time that MAS DNP has been used to successfully estimate intracellular drug amounts.