American Chemical Society
jm901062p_si_001.pdf (641.58 kB)

Improving Binding Specificity of Pharmacological Chaperones That Target Mutant Superoxide Dismutase-1 Linked to Familial Amyotrophic Lateral Sclerosis Using Computational Methods

Download (641.58 kB)
journal contribution
posted on 2010-04-08, 00:00 authored by Richard J. Nowak, Gregory D. Cuny, Sungwoon Choi, Peter T. Lansbury, Soumya S. Ray
We recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface. A series of chemically unrelated hits were predicted, which were experimentally tested for their ability to block aggregation. At least six of the new molecules exhibited high specificity of binding toward SOD-1 in the presence of blood plasma. These molecules represent a new class of molecules for further development into clinical candidates.