American Chemical Society
Browse

Immobilization of Coupled Enzymes onto Metalated Hierarchical Organic Microspheres

Download (7.96 MB)
journal contribution
posted on 2024-10-30, 19:33 authored by Yintao Li, Wei Wang, Yang Sun, Jie Fan, Hua Zhang, Pengfei Ji
Hierarchical organic microspheres (HOMs) have emerged as an ideal carrier for immobilizing biomacromolecules. In this research, an in-depth investigation into the structural characteristics of a striated HOM, known as HOM-15, has revealed the assembly mechanism of microspheres through weakly stacked two-dimensional structural units that are composed of V-shaped small organic molecules. With the leverage of this understanding, HOM-15 was adopted as a stable and reusable platform for co-immobilizing of ene-reductases and glucose dehydrogenases via metal ion bridging onto the surface of HOMs. The research demonstrates that metal ion bridging can finely tune the surface properties of HOM-15, thereby facilitating the immobilization of enzymes that would otherwise be impeded by electrostatic repulsion. Comparing HOM-15 to other microspherical variants revealed its superior biocatalytic performance, attributed to the reduction of the mass transfer barrier facilitated by its lamellar-stacking morphology. This novel biocatalytic system underscores the potential applications of HOMs in broader biocatalytic processes.

History