posted on 2020-02-26, 16:44authored byBjörn Bastian, Tim Michaelsen, Lulu Li, Milan Ončák, Jennifer Meyer, Dong H. Zhang, Roland Wester
The
dynamics of microhydrated nucleophilic substitution reactions
have been studied using crossed beam velocity map imaging experiments
and quasiclassical trajectory simulations at different collision energies
between 0.3 and 2.6 eV. For F–(H2O) reacting
with CH3I, a small fraction of hydrated product ions I–(H2O) is observed at low collision energies.
This product, as well as the dominant I–, is formed
predominantly through indirect reaction mechanisms. In contrast, a
much smaller indirect fraction is determined for the unsolvated reaction.
At the largest studied collision energies, the solvated reaction is
found to also occur via a direct rebound mechanism. The measured product
angular distributions exhibit an overall good agreement with the simulated
angular distributions. Besides nucleophilic substitution, also ligand
exchange reactions forming F–(CH3I) and,
at high collision energies, proton transfer reactions are detected.
The differential scattering images reveal that the Cl–(H2O) + CH3I reaction also proceeds predominantly
via indirect reaction mechanisms.