American Chemical Society
Browse
pr1006153_si_001.pdf (1.14 MB)

Identification of Tyrosine-Phosphorylated Proteins Associated with Lung Cancer Metastasis using Label-Free Quantitative Analyses

Download (1.14 MB)
journal contribution
posted on 2010-08-06, 00:00 authored by Hsin-Yi Wu, Vincent S. Tseng, Lien-Chin Chen, Hui-Yin Chang, I-Chi Chuang, Yeou-Guang Tsay, Pao-Chi Liao
Lung cancer is a lethal disease, and early metastasis is the major cause of treatment failure and cancer-related death. Tyrosine phosphorylated (P-Tyr) proteins are involved in the invasive and metastatic behavior of lung cancer; however, only a limited number of targets were identified. We attempt to characterize P-Tyr proteins and events involved in the metastatic process. In a previous work, we have developed a strategy for identification of protein phosphorylation. Here, this strategy was used to characterize the tyrosine phosphoproteome of lung cancer cells that have different invasive abilities (CL1-0 vs. CL1-5). Using our analytical strategy, we report the identification of 335 P-Tyr sites from 276 phosphoproteins. Label-free quantitative analysis revealed that 36 P-Tyr peptides showed altered levels between CL1-0 and CL1-5 cells. From this list of sites, we extracted two novel consensus sequences and four known motifs for specific kinases and phosphatases including EGFR, Src, JAK2, and TC-PTP. Protein−protein interaction network analysis of the altered P-Tyr proteins illustrated that 11 proteins were linked to a network containing EGFR, c-Src, c-Myc, and STAT, which is known to be related to lung cancer metastasis. Among these 11 proteins, 7 P-Tyr proteins have not been previously reported to be associated with lung cancer metastasis and are of greatest interest for further study. The characterized tyrosine phosphoproteome and altered P-Tyr targets may provide a better comprehensive understanding of the mechanisms of lung cancer invasion/metastasis and discover potential therapies.

History