American Chemical Society
Browse

Hydride-Based Interlayer for Solid-State Anode-Free Battery

Download (2.21 MB)
journal contribution
posted on 2024-06-20, 16:38 authored by Yonglin Huang, Yuxuan Zhang, Ruixin Wu, Bowen Shao, Ruihao Deng, Ratnottam Das, Fudong Han
Solid-state batteries (SSBs) are considered a promising approach to realizing an anode-free concept with high energy densities. However, the initial Coulombic efficiency (ICE) has remained insufficient for anode-free batteries using sulfide-based solid electrolytes (SEs). Herein, we incorporated a hydride-based interlayer, 3LiBH4-LiI (LBHI), between a typical sulfide SE, Li6PS5Cl, and the Cu current collector. By investigating the Li plating and stripping behaviors and the (electro)­chemical stability between SEs and plated Li, we demonstrated that LBHI can effectively improve interfacial stability, leading to an ICE exceeding 94% in anode-free half cells. This interlayer also improves Coulombic efficiencies and specific capacities in anode-free full cells. Furthermore, the utilization of LBHI enables one to study Li plating behaviors without interference from interfacial (electro)­chemical instabilities. The analysis of stack pressure evolution during electrochemical cycling reveals that soft shorting in SSBs arises from both dendrite formation and deformation, offering insights into further optimizing solid-state anode-free batteries.

History