American Chemical Society
ja1c02250_si_001.pdf (906.29 kB)

Hybridization of Molecular and Graphene Materials for CO2 Photocatalytic Reduction with Selectivity Control

Download (906.29 kB)
journal contribution
posted on 2021-05-25, 17:39 authored by Bing Ma, Matías Blanco, Laura Calvillo, Lingjing Chen, Gui Chen, Tai-Chu Lau, Goran Dražić, Julien Bonin, Marc Robert, Gaetano Granozzi
In the quest for designing efficient and stable photocatalytic materials for CO2 reduction, hybridizing a selective noble-metal-free molecular catalyst and carbon-based light-absorbing materials has recently emerged as a fruitful approach. In this work, we report about Co quaterpyridine complexes covalently linked to graphene surfaces functionalized by carboxylic acid groups. The nanostructured materials were characterized by X-ray photoemission spectroscopy, X-ray absorption spectroscopy, IR and Raman spectroscopies, high-resolution transmission electron microscopy and proved to be highly active in the visible-light-driven CO2 catalytic conversion in acetonitrile solutions. Exceptional stabilities (over 200 h of irradiation) were obtained without compromising the selective conversion of CO2 to products (>97%). Most importantly, complete selectivity control could be obtained upon adjusting the experimental conditions: production of CO as the only product was achieved when using a weak acid (phenol or trifluoroethanol) as a co-substrate, while formate was exclusively obtained in solutions of mixed acetonitrile and triethanolamine.