mt9b00130_si_001.pdf (817.55 kB)

Hyaluronic Acid Nanoparticles Based on a Conjugated Oligomer Photosensitizer: Target-Specific Two-Photon Imaging, Redox-Sensitive Drug Delivery, and Synergistic Chemo-Photodynamic Therapy

Download (817.55 kB)
journal contribution
posted on 07.05.2019, 00:00 by Yan-Qin Huang, Li-Jie Sun, Rui Zhang, Jian Hu, Xing-Fen Liu, Rong-Cui Jiang, Qu-Li Fan, Lian-Hui Wang, Wei Huang
Self-assembled hyaluronic acid (HA) nanoparticles have been extensively investigated as anticancer therapeutic agents due to the biocompatibility, biodegradability, and active targeting characteristics of HA. However, many HA nanoparticles are restricted to the applications in drug delivery for chemotherapy or lack effective imaging agents. Hence, we developed the camptothecin (CPT)-loaded HA-SS-BFVPBT nanoparticles (HSBNPs) as a multifunctional platform for two-photon imaging and synergistic chemo-photodynamic therapy at the same time. A novel conjugated oligomer photosensitizer, BFVPBT, which was conjugated onto HA through the redox-responsive disulfide linkage (SS), could not only provide a hydrophobic domain for the formation of nanoparticles and drug entrapment but also act as a two-photon photosensitizer that can be directly excited and simultaneously used in two-photon imaging and photodynamic therapy (PDT). HeLa cells overexpressing the HA receptor (CD44) were used for in vitro studies, which proved the specific cellular uptake of CPT-loaded HSBNPs and excellent two-photon PDT/chemotherapy synergistic effect. The nanoparticles have also been shown to realize tumor-targeting in vivo imaging in HeLa-tumor-bearing mice. Moreover, the fluorescence of CPT-loaded HSBNPs could be activated due to the degradation by the reductive glutathione (GSH) and overexpressed hyaluronidases (Hyal-1) in cancer cells, and the intracellular drug release rate was quickened, thus improving the probability of precise cancer diagnosis and therapy. Accordingly, this HSBNPs system is also anticipated to be a precise nanocarrier for other imaging and therapeutic agents besides CPT, offering a promising new avenue for imaging-guided efficient cancer therapy.

History