sc9b02078_si_001.pdf (992.01 kB)

Honeycomb-like Porous Carbon with Nanographitic Domains, Supported on Graphene Layers: Applicability for Lithium/Sodium Storage

Download (992.01 kB)
journal contribution
posted on 14.05.2019, 00:00 by Li Su, Lina Kong, Shuaiguo Hao, Yao Zhao, Zhipeng Ma, Xiujuan Qin, Guangjie Shao
Hard carbon has emerged as a candidate for anode material because of its abundant resources and large interlayer spacing for lithium/sodium storage. However, disordered amorphous carbon with low electronic conductivity and poor stability restricts its valuable application. Herein, this work demonstrates a design of honeycomb-like porous carbon with nanographitic domains, supported on graphene layers. The highly ordered graphene layer constructs a conductive network for high-speed electronic transport throughout the entire structure. The honeycomb-like amorphous structure with nanopores favors the interfacial storage of lithium/sodium ions, enabling high reversible capacity. More importantly, the introduction of nanographitic domains into carbon matrix is an effective method for improving electronic transport and stabilizing reversible ion insertion/desertion because of expanded interlayer distance (0.36 nm). When serving as anode material for lithium storage, it exhibits a stable capacity of 1390.1 mA h g–1 at the current density of 0.2 A g–1, with excellent cycling stability (721.4 mA h g–1 after 200 cycles at a 1.0 A g–1) and even remains at 202.8 mA h g–1 undergoing 5000 cycles at 10 A g–1. Furthermore, a high reversible sodium storage capacity of 352.1 mA h g–1 is obtained, also with good stability of 124.4 mA h g–1 after 500 cycles at 1.0 A g–1. We believe that the material is promising for lithium/sodium storage with excellent performance.