American Chemical Society
ab7b00643_si_001.pdf (235.76 kB)

Hollow Copper Sulfide Nanosphere–Doxorubicin/Graphene Oxide Core–Shell Nanocomposite for Photothermo-chemotherapy

Download (235.76 kB)
journal contribution
posted on 2017-10-30, 00:00 authored by Lu Han, Ya-Nan Hao, Xing Wei, Xu-Wei Chen, Yang Shu, Jian-Hua Wang
A novel core–shell nanostructure, hollow copper sulfide nanosphere–doxorubicin (DOX)/graphene oxide (GO) (CuS–DOX/GO), is constructed for the purpose of controlled drug delivery and improved photothermo-chemotherapeutic effect. The CuS–DOX/GO nanocomposite is configured by employing dual photothermal agents, where the core, hollow CuS nanoparticle, acts as delivery-carrier for doxorubicin, and the shell, PEGylated GO nanosheet, prohibits leakage of the drug. DOX can be efficiently loaded onto the hollow CuS nanoparticles, and its subsequent release from CuS–DOX/GO nanocomposite is triggered in a pH- and near-infrared light-dependent manner. Moreover, integration of the two photothermal agents significantly improves the photothermal performance of this system. Ultimately, the combination of phototherapy and chemotherapy based on this system results in a much higher HeLa cell killing efficacy with respect to that for a single chemotherapy mode, as demonstrated by in vitro cytotoxicity tests.