cn9b00231_si_002.pdf (99.56 kB)

High-Throughput Ca2+ Flux Assay To Monitor Cyclic Nucleotide-Gated Channel Activity and Characterize Achromatopsia Mutant Channel Function

Download (99.56 kB)
journal contribution
posted on 24.07.2019, 19:03 by Marlene A. Jacobson, Laura J. Jones, Dennis J. Colussi, Jacqueline C. Tanaka
Cone photoreceptor cyclic-nucleotide gated channels (CNG) are tetrameric proteins composed of subunits from CNGA3 and CNGB3. These channels transduce light information into electrical signals carried by both Na+ and Ca2+ ions. More than 100 mutations in the CNGA3 gene are associated with the inherited retinal disorder, achromatopsia 2 (ACHM2), which results in attenuation or loss of color vision, daylight blindness, and reduced visual acuity. Classical techniques to measure CNG channel function utilize patch clamp electrophysiology measuring Na currents in the absence of divalent cations, yet intracellular Ca2+ regulates both light and dark adaptation in photoreceptors. We developed a fluorescence-based, high-throughput Ca2+ flux assay using yellow fluorescent protein (YFP) tagged CNGA3 channels expressed in HEK293 cells which allow monitoring for folding defects in mutant channels. The cell permeant cGMP analog, 8-(4-chlorophenylthio)-cGMP (CPT-cGMP), was used to activate Ca2+ flux. The assay was validated using wild-type CNGA3 homomeric and heteromeric channels and ACHM2-associated homomeric mutant CNG channels, CNGA3-R427C, CNGA3-E590K, and CNGA3-L633P. Additionally, we examined two naturally occurring canine mutations causing day-blindness previously studied by patch clamp. We compared the CPT-cGMP K0.5 values of the channels with patch clamp values from previous studies. The assay provides a screen for modulation of gating and/or rescue of trafficking and/or misfolding defects in ACHM2-associated CNG channels. Importantly, the calcium flux assay is advantageous compared to patch clamp as it allows the ability to monitor CNG channel activity in the presence of calcium.