ic8b03327_si_001.pdf (2.45 MB)
Download fileHierarchical Ni2P@NiFeAlOx Nanosheet Arrays as Bifunctional Catalysts for Superior Overall Water Splitting
journal contribution
posted on 2019-02-12, 13:19 authored by Zhi Gao, Feng-qing Liu, Li Wang, Feng LuoBifunctional
electrocatalysts based on transition-metal phosphides are appealing
for overall water splitting owing to their excellent electrical conductivity,
low cost, and high stability. However, these specials are often restricted
by some serious drawbacks such as its relatively poor activity for
oxygen evolution reaction (OER) and its manufacture, which usually
requires one to add additional large numbers of P sources and, consequently,
inevitably leads to the release of flammable and detrimental PH3. Herein, we show an effective avenue to overcome these issues.
For the first time, the in situ topological transformation of PO43–-intercalated NiFeAl-layered double hydroxide
nanosheet arrays upon calcination under a H2 atmosphere
is developed to fabricate supported nickel phosphide without any additional
P source. The resulting phase affords unique Ni2P@NiFeAlOx core–shell nanosheet arrays, which
exhibit an excellent performance for OER and hydrogen evolution reaction
in 1.0 M KOH, with low overpotentials of 210 and 105 mV at 10 mA cm–2, respectively. Impressively, it can also serve as
both a cathode and an anode to drive water splitting in alkaline media,
giving 10 and 100 mA cm–2 at cell voltages of only
1.52 and 1.62 V, respectively. This value is better than the commercial
criterion of the Pt/C//IrO2 counterpart and also ranks
at the top level in all established bifunctional electrocatalysts.
The outstanding performance of Ni2P@NiFeAlOx is mainly attributed to the synergistic effect from
a highly dispersed Ni2P core and a thin NiFeAlOx shell, as well as the efficient mass transport of
a hierarchical nanoarray framework.
History
Usage metrics
Categories
Keywords
1.62 VPH 3intercalated NiFeAl-layeredH 2 atmospherehydroxide nanosheet arraysmass transportPOcell voltages1.0 M KOHhydrogen evolution reactionBifunctional Catalystswater splittingcmoxygen evolution reactionnickel phosphidetransition-metal phosphidesNi 2 P coremAnanoarray frameworkWater Splitting Bifunctional electrocatalystsOERdrive water splittingP sourceNiFeAlO x shellP sourcestopological transformationperformance105 mVbifunctional electrocatalysts